Analisis Penggunaan Timbunan Mortar Busa Pada Pembangunan Flyover Jalan Pelajar Pejuang 45 – Jalan Gatot Subroto Kota Bandung

  • Eris Kusdhianto Universitas Sangga Buana YPKP Bandung
  • Abdul Chalid Universitas Sangga Buana YPKP Bandung
Keywords: Lightweight Cellular Concrete (LCC), embankment material, compressive strength.

Abstract

ABSTRACT

The type of subgrade is a very important factor because Indonesia's road network is spread over areas with various types of soil. Some of these soil types, such as soils that are weak or susceptible to soil plasticity conditions are referred to as geotechnical conditions that are difficult to carry loads in road construction. The use of Lightweight Cellular Concrete (LCC) as an embankment material has recently been widely used, including in fly-over works located at Jalan Pelajar Pejuang 1945 and Jalan Gatot Subroto, Bandung City. This study conducted a study on the properties of LCC including compressive strength, workability properties, and the relationship between density and compressive strength of LCC. The results showed that as the age of the LCC sample increased, the compressive strength of the LCC increased. LCC density is getting smaller at increasing LCC compressive strength.

Key words: Lightweight Cellular Concrete (LCC), embankment material, compressive strength.

References

Aldridge, D. (2005). Introduction to foamed concrete: what, why, how? In Use of Foamed Concrete in Construction: Proceedings of the International Conference held at the University of Dundee, Scotland, UK on 5 July 2005 (pp. 1-14). Thomas Telford Publishing.

American Society for Testing and Materials (ASTM) C796/C796M. (2012). Standard Test Method for Foaming Agents for Use in Producing Cellular Concrete Using Preformed Foam.

American Society for Testing and Materials (ASTM) D4694-09 (2015). Standard Test Method for Deflections with a Falling-Weight-Type Impulse Load Device.

American Society for Testing and Materials (ASTM) D4695-03 (2015). Standard Guide for General Pavement Deflection Measurements.

ACI Commite 211, 1995, Standard Practice for Selecting Proportions for Normal, Heavyweigth, dan Mass Concrete (ACI 211.1-91), American Concrete Institute, Detriot Michigan.

British Cement Association (BCA) (1994). “Foamed concrete‐ Composition and properties”.First published in 1991, British Cement Association.

Byun, K. J., Song, H. W., Park, S. S., & Song, Y. C. (1998). Development of structural lightweight foamed concrete using polymer foam agent. ICPIC-98, 9.

Dolton, B., Witchard, M., Luzzi, D., & Smith, T. J. (2016). Application of Lightweight Cellular Concrete to Reconstruction of Settlement Prone Roadways in Victoria. GEOVancouver.

Dransfield, J. M. (2000, March). Foamed concrete: Introduction to the product and its properties. In One-day awareness seminar on Foamed Concrete: Properties, Applications and Potential, University of Dundee, Scotland (pp. 1-11).

Hoff Inge, Watn A, Oiseth E, EMDAL A., Amundsgard, K O., (2002). Light Weight Aggregate (LWA) Used In Road Pavements. Proceedings of the 6th international conference on the bearing capacity of roads and airfields, Lisbon, Portugal, 2, pp. 1013-22.

Horpibulsuk, S., Suddeepong, A., Suksiripattanapong, C., Chinkulkijniwat, A., Arulrajah, A., & Disfani, M. M. (2014). Water-void to cement ratio identity of lightweight cellular- cemented material. Journal of Materials in Civil Engineering, 26(10), 06014021.

Insan, M. K., Hariati, F., & Taqwa, F. M. L. (2019). Studi Pemanfaatan Fly Ash dan Bottom Ash sebagai Material Stabilisasi Tanah Dasar (Studi Kasus: Pekerjaan Subgrade Untuk Jalan Lingkungan di PLTU Sulawesi Utara II, Kabupaten Minahasa Selatan, Sulawesi Utara). Jurnal Komposit, 3(2), 1–6. http://ejournal.uika-bogor.ac.id/index.php/komposit/article/view/3257/1900

Kearsley, E.P. (1996) The Use of Foamed Concrete for Affordable Development in Third World Countries. In Appropriate Concrete Technology; Dhir, R.K., McCarthy, M.J., Eds.; E & FN Spon: London, UK, pp. 233–243

Kearsley E.P., Wainwright P.J. (2001). The effect of high fly ash content on the compressive strength of foamed concrete. Cement Concrete Research, 31, pp. 105–12.

Kearsley E.P, Wainwright PJ (2002). Ash content for optimum strength of foamed concrete. Cement Concrete Research, 32, pp. 241–6

Ozlutas, K. (2015). Behavior of ultra-low density foamed concrete (Doctoral dissertation, University of Dundee).

Ramamurthy, K., Nambiar, E. K., & Ranjani, G. I. S. (2009). A classification of studies on properties of foam concrete. Cement and Concrete Composites, 31(6), 388-396.

SK SNI T-15-1990-03, Tata Cara Pembuatan Rencana Campuran Beton Normal, Yayasan LPMB, Bandung

Taqwa, F. M. L., Chayati, N., Alimuddin, A., & Salman, N. (2019). Pemeriksaan Hasil Pelaksanaaan Pemadatan Timbunan Tanah di Lokasi Pembangunan Jalan Akses Gardu Induk PLN Kasus Pembangunan Gardu Induk PLN Pd. Indah II Kec. Ciputat Timur, Kota Tangerang Selatan. Jurnal Komposit, 3(2), 53-57.

Taqwa, F. M. L., & Irfan, A. M. (2020). Studi Uji Kuat Tekan Bebas (UCS) pada Tanah Distabilisasi dengan Fly Ash dan Semen untuk Kontruksi Lapis Fondasi Jalan. Konferensi Nasional Teknik Sipil 14, 47–55.

Yakovlev, G., Kerienė, J., Gailius, A., & Girnienė, I. (2006). Cement based foam concrete reinforced by carbon nanotubes. Materials Science [Medžiagotyra], 12(2), 147-151.

Published
2021-11-27